Appendix F. Figure Descriptions

Appendix F. Figure Descriptions

This appendix includes written descriptions of all figures included in this Technical Report. If needed, additional figure interpretation is available from the ODOT Senior Environmental Project Manager at (503) 731-4804.

| Figure |
| :--- | :--- | :--- |
| Number | Figure Title | Figure Description |
| :--- | :--- |\quad| Project Area |
| :--- |
| 1 |

Figure Number	Figure Title	Figure Description
4	1-5 Cross Section (N/NE Weidler Overcrossing) - Existing Conditions and Proposed Improvements	Figure 4 show s a cross section comparison of existing and proposed conditions of I 5 south of the N/NE Weidler overcrossing within the Broadway/Weidler interchange area. Existing conditions are show non the top and are the same for NB and SB traffic and include an inside and outside shoulder of varying width and two 12-foot lanes. Proposed lane configuration is show n below the existing conditions and is the same for NB and SB traffic and include an inside and outside shoulder, tw o through lanes, and one auxiliary lane. All shoulders and lanes are 12 feet wide.
5	Broadw ay/ Weidler/ Williams and Vancouver/ Hancock Highw ay Covers	Figure 5 shows a rendering of the Broadw ay/Weidler/Williams and Vancouver/Hancock highw ay covers. The Broadw ay/Weidler/Williams cover appears as a green space that spans east-w est across l-5, extending from immediately south of N/NE Weidler to immediately north of N/NE Broadway. The entire block betw een N/NE Weidler, NE Victoria Avenue, N/NE Broadw ay, and N Williams is all show n as a green space covering l-5. The Vancouver/Hancock cover is located farther to the north and appears as a smaller green space extending northw est and southeast from N Vancouver Avenue at its intersection w ith N/NE Hancock. Proposed bike lanes are also shownalong N/NE Weidler, N Williams, N Vancouver, N/NE Broadway, and N/NE Hancock.
6	Broadw ay/ Weidler Interchange Area Improvements	Figure 6 shows locations of improvements to the Broadw ay/Weidler interchange betw een I-5, the interchange, and the local street netw ork. Improvements are labeled with letters A through H . The Broadw ay/Weidler/Williams cover spans eastw est across $1-5$, extending from immediately south of N/NE Weidler to immediately north of N/NE Broadway. The Vancouver/Hancock cover is located farther to the north and appears as a smaller green space extending northw est and southeast from N Vancouver at its intersection with N/NE Hancock. Both covers are indicated by the letter "A." Letter "B" is located near the bottom of the figure and show s how the $1-5$ SB on-ramp w ould be relocated by having it begin one block farther north at N/NE Weidler instead of N Ramsay Way, where the existing ramp begins. Letter "C" located near the middle of the figure show s the segment of N Williams betw een N Ramsay and N Weidler that w ould be closed to private motor vehicles. Letter "D" located near the middle of the figure shows the location of where traffic flow on N Williams between N/NE Weidler and N/NE Broadw ay would be converted to a reverse traffic flow tw o-way street w ith a 36 -foot-w ide median. Letter "E" show s the location of the proposed Hancock-Dixon crossing that extends from the intersection of N Dixon Street and N Wheeler east to N Williams and N/NE Hancock. Letter "G" indicates the location where N Flint Avenue would be removed beginning at N Tillamook Street and extending south to N Broadw ay. Letter "H" show s the location of the proposed Clackamas bicycle and pedestrian bridge, located south of N/NE Weidler to connect NE Clackamas Street with N Williams. The Project Area boundary and proposed auxiliary lanes and shoulders are also show non the figure.
7	Conceptual Illustration of Proposed N Williams MultiUse Path and Revised Traffic Flow	Figure 7 shows a rendering of the proposed N Williams multi-use path and reverse traffic flow. The foreground in the bottom half of the rendering shows the multi-use path as an extension of the sidew alk to the west (left) of N Williams. The top half of the rendering shows tw o SB traffic lanes to the east (right) of the multi-use path/median and two NB traffic lanes to the west (left) of the multi-use path/median. The Broadway/Weidler/Williams cover is show n as green space to the east (right) of N Williams SB traffic lanes.
8	Clackamas Bicycle and Pedestrian Crossing	Figure 8 shows a rendering of the Clackamas bicycle and pedestrian crossing. The crossing is show n as a curved elevated path crossing $l-5$, connecting NE Clackamas on the east side of $\mathrm{I}-5$ to N Williams on the west side of $\mathrm{I}-5$. Green bicycle lanes are also show n on either side of N Williams, located just west of $\mathrm{I}-5$.

Figure Number	Figure Title	Figure Description
9	Transportation Area of Potential Impact	Figure 9 show s the Project Area boundary (as show n in Figure 1) and the Area of Potential Impact (API) boundary for the transportation safety study. The API includes the entire Project Area and an additional portion of N Broadw ay on the west. The Project Area extends west on N Broadw ay to N Benton. The API extends w est on N Broadw ay to N Larrabee Street, which is w est of N Benton.
10	Local Street Study Intersections	Figure 10 show s the API boundary from N Page Street in the north to NE Oregon Street in the south and the 14 study intersections (13 existing and 1 [N Vancouver/ N Hancock] that only exists for the Build Alternative). Ten intersections are on N/NE Weidler and N/NE Broadw ay spanning from the N Broadw ay and N Larrabee intersection in the west to the NE Broadw ay and NE Weidler intersections with NE 2nd in the east. Three intersections are on N/NE Hancock at N Flint, N Vancouver, and N Williams. One intersection is south of N/NE Weidler at N Wheeler/ N Williams/N Ramsay.
11	I-5 Corridor Crashes Based on Severity (2011-2015)	Figure 11 is a circular pie chart show ing the number and percentage of crashes categorized by severity, in different colors for the period 2011 to 2015. Filling the left side of the circle, in yellow, a majority of the crashes (387 or 51 percent) are show n having no injury involved. Occupying most of the right side of the circle, in orange, there are 305 (40 percent) of the crashes show n w ith minor injuries; a small portion of the upper right side of the circle is show n in red indicating that 56 (8 percent) of the crashes had moderate injuries, a sliver at the top right side of the circle, in green, identifies 6 (1 percent) crashes with serious injuries, and a very narrow sliver, in blue, show s 1 (less than 1 percent) crash resulting in a fatality.
12	SPIS Segments in the Project Area	Figure 12 show s the Project Area boundary and Safety Priority Index System (SPIS) scores for three segments of $1-5$. The NB and SB l-5 segments betw een mileposts 302.75 and 302.82 (length of 0.07 mile, south of the l-405 NB off-ramp) are in the top 10 percent of SPIS scores with a score of 57.11 and an annual average daily traffic (AADT) number of 123,340. Immediately south, the NB and SB segments betw een mileposts 302.52 and 302.75 (0.23 mile) are in the top 5 percent of SPIS scores statew ide with a score of 79.93 and an AADT of 123,340. Farther south (in the area from around the Moda Center to the Steel Bridge), the NB and SB segments betw een mileposts 301.84 and 302.12 (0.28 mile) are in the top 5 percent of SPIS scores statew ide with a score of 80.97 and an AADT of 123,680 .
13	I-5 Corridor Crashes by Hour of Day (2011-2015)	Figure 13 is a bar graph show ing the number of l-5 corridor crashes by hour of day for the study period 2011 to 2015. The x-axis shows hours of the day, from 12 AM on the left to 11 PM on the right. Crashes occurring at an unknow n time are documented at the far right of the x-axis. The y-axis shows number of crashes for both NB and SB I-5 travel directions. Most of the crashes are in the SB direction, from 11 AM to 6 PM and are show n by blue bars. The highest numbers of SB crashes are at 3 PM and 5 PM (70 crashes for each hour) and the shoulders of the curve, if a curve was imposed on the bars, are at 11 AM and 6 PM w ith about 40 and 35 crashes, respectively. The periods on either side of 11 AM and 6 PM show few er than 20 crashes, w ith most show ing few er than 10. NB crash peaks, show n by yellow bars, are at 2 PM, 4 PM, and 5 PM; each hour shows about 20 crashes. $12 \mathrm{PM}, 3 \mathrm{PM}$, and 6 PM each show about 15 crashes, and the remaining periods show 10 or fewer.

Figure Number	Figure Title	Figure Description
14	I-5 Corridor Crashes by Year (All Severities, 2011-2015)	Figure 14 is a bar graph show ing the number of crashes by year for the study period 2011 to 2015; it show s crashes for both directions, in blue bars, and by subsets for NB, in red bars, and SB in green bars. Total crashes per year have declined from (numbers are approximate) around 160 in 2011 to 145 in 2015. SB crash numbers show no overall trend and range from 100 to 120 per year. NB crash numbers show no overall trend and range from 25 to 50 per year.
15	I-5 Corridor Crash Contributing Factors (2011-2015)	Figure 15 is a circular pie chart show ing the numbers and percentages of factors contributing to crashes for the study period 2011 to 2015. A majority of crashes in the period, show n in blue occupying the entire right side, and part of the low er bottom left side of the circle, were due to follow ing too close (476, 63 percent), follow ed by improper lane change (120, 16 percent) show n in pink on the left center side of the circle, and failure to avoid (70, 9 percent) show n in red near the upper left part of the circle; the remaining 89 (12 percent) are show n in small wedges at the upper left of the circle and are attributed to other causes including inattention (in green), driving too fast (in dark blue), other improper (in yellow), and all other (in orange).
16	1-5 Corridor Crash Causes for Fatal and Serious Injury Collisions (2011-2015)	Figure 16 is a circular pie chart show ing the numbers and percentages of causes of fatalities and serious injuries resulting from crashes during the study period (20112015. A majority of these types of crashes result from follow ing too close (4,57 percent). This is follow ed by one crash (14 percent) each for being in the roadw ay illegally, inattention, and reckless driving. (Note that one of the last three causes is labeled as 15 percent so the sum for the pie chart equals 100.)
17	1-5 Corridor Collision Types (20112015)	Figure 17 is a circular pie chart show ing the numbers and percentages of four types of collisions, from 2011-2015 data. Most are rear-end collisions (595, 80 percent), follow ed by side sw ipe overtaking (129, 17 percent), fixed object (17, 2 percent), and turning collisions (9, 1 percent).
18	Corridor Segmentation and Crash Rates	Figure 18 shows $1-5$ from north of $1-405$ to the Burnside Bridge. SB is broken up into seven segments on the left side of the figure, and NB is broken up into six segments on the right side of the figure. Each segment is show n as either being below or exceeding the statew ide average crash rate of 0.77 crashes per million vehicle miles travelled. Segment 1 for both NB and SB is at the north end of the corridor.
		SB Segment 1 (the half-mile segment north of the SB N Greeley on-ramp) is the only segment below the average with a crashrate of 0.53 . The remaining SB segments progressing south have rates (and lengths) of 1.25 (0.17 mile), 4.94 (0.32 mile), 1.46 (0.57 mile), 15.71 (0.11 mile), 3.25 (0.21 mile), and 0.95 (0.13 mile).
		NB has three segments that are below the average crash rate: Segments 1,4 , and 6. North to south, the rates (and lengths) for the six segments are as follow s: 0.7 (0.19 mile), 1.29 (0.2 mile), 2.67 (0.08 mile), 0.44 (0.58 mile), 5.66 (0.13 mile), and 0.51 (0.39 mile).
		More details are available in Appendix B of this technical report.

Figure Number	Figure Title	Figure Description
19	Total Number of Crashes (by Mode)	Figure 19 is a bar graph show ing the total number of crashes for three modes (pedestrian, bike, and motor vehicle) for each of the 13 study intersections during the study period (2011-2015). Crashes involving motor vehicles dominate the graph and are show n by blue bars. Only tw ointersections had pedestrian-involved crashes, and are show nin red, and seven had bicycle-involved crashes, show n in green. There are five intersections, show n by the longest bars, that stand out as having the highest total crashes (ranging from 30 to 43): three along N/NE Weidler at N Vancouver, N Williams, and NE Victoria; and two along N/NE Broadw ay at N Williams and NE Victoria. Detailed data are available in Appendix C of this technical report.
20	Crash Severity Distribution	Figure 20 is a bar graph show ing the numbers and severity of the crashes for each of the 13 study intersections during the study period (2011-2015). Four levels of severity are listed in the legend: Type A injuries (Incapacitating Injury), show n by green bars; Type B (Non-Incapacitating but Evident Injury), show n by red bars; Type C (Possible Injury), show n by orange bars; and PDO (Property Damage Only), show n by yellow bars. PDO crashes appear as a majority of the crashes and have the longest bars, follow ed by Type C crashes. Detailed data are available in Appendix C of this technical report.
21	Collision Type Crash Distribution	Figure 21 is a bar graph show ing the numbers and types of crashes for each of the 13 study intersections during the study period (2011-2015). Tw elve types of crashes are listed in the legend. Turning movement crashes appear to be the primary crash type and are show n by green bars. Angle and rear-end crashes appear as the next most common types of crashes, show n by blue and red bars, respectively. Number of crashes per intersection range from 1 at N Flint/N Hancock to 43 at NE Victoria/NE Broadway. Detailed data are available in Appendix C of this technical report.
22	Pedestrian/ Bike Crashes (by Severity)	Figure 22 is a bar graph show ing the numbers and injury types of crashes for the 13 study intersections during the study period (2011-2015). There are five types of crashes in the legend: Types A and B pedestrian, show n by red bars, and pink bars; and Types A, B, and C bicycle, show n by dark blue, medium blue, and light blue bars. Only eight intersections had crashes involving pedestrians and/or bicycles. Most crashes are either Type B (medium blue bars) or Type C (light blue bars) crashes involving bicycles. Detailed data are available in Appendix C of this technical report.
23	Crash Distribution by the Time of Day	Figure 23 is a bar graph show ing the numbers and times of occurrence of crashes in the 13 study intersections during the study period (2011-2015). Five time periods are listed in the legend-Midnight to 7 AM, AM Peak (7 to 9 AM), 9 AM to 4 PM, PM Peak (4 to 6 PM), 6 PM to Midnight, and one category labeled Unknown. The time period that stands out for most crashes, with the longest bars, is 9 AM to 4 PM . Detailed data are available in Appendix C of this technical report.

Figure Number	Figure Title	Figure Description
Appendix E	I-5 Rose Quarter Emergency Braking Heatmap Existing Condition	The figure shows four emergency breaking heatmaps for Existing Conditions for the I-5 corridor in the Project Area: tw ofor the AM Peak, NB and SB; and tw ofor the PM Peak, NB and SB. Green and blue indicate the least occurrence of emergency braking with yellow and red indicating higher occurrence of emergency braking. The NB AM Peak is all blue except for greenish spots from south of the N Broadw ay off-ramp and to south of the l-405 off-ramp. The SB AM Peak is yellow from the north approaching the N Going Street on-ramp; greenish to the N Greeley on-ramp; yellow to the N Broadw ay off-ramp; blue to the N Wheeler on-ramp; greenish just south of the N Wheeler on-ramp; and continues blue. The NB PM Peak has greenish spots from south of the N Broadw ay off-ramp to south of the $1-405$ off-ramp; yellow from north of the $1-405$ off-ramp to the $1-405$ onramp; red fading to yellow to south of the N Going off-ramp; the blue to the north. The SB PM Peak show s greenish yellow approaching the N Greeley on-ramp; reddish yellow to the N Broadw ay off-ramp; greenish to south of the N Wheeler onramp; then blue continuing south.
Appendix E	I-5 Rose Quarter Emergency Braking Heatmap Future Year 2045 No-Build	The figure show s four emergency breaking heatmaps for No-Build Conditions for the l-5 corridor in the Project Area: tw o for the AM Peak, NB and SB; and tw ofor the PM Peak, NB and SB. Green and blue indicate the least occurrence of emergency braking with yellow and red indicating higher occurrence of emergency braking. Both NB and SB look the same as for Existing Conditions. The NB AM Peak is all blue except for greenish spots from south of the N Broadw ay off-ramp and to south of the l-405 off-ramp. The SB AM Peak is yellow from the north approaching the N Going on-ramp; greenish to the N Greeley on-ramp; yellow to the N Broadw ay offramp; blue to the N Wheeler on-ramp; greenish just south of the N Wheeler onramp; and continues blue. The NB PM Peak looks the same as the NB AM Peak. The SB PM Peak looks the same as the Existing Conditions SB PM Peak: greenish yellow approaching the N Greeley on-ramp; reddish yellow to the N Broadw ay off-ramp; greenish to south of the N Wheeler on-ramp; then blue continuing south.

