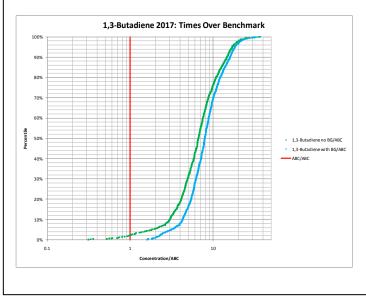
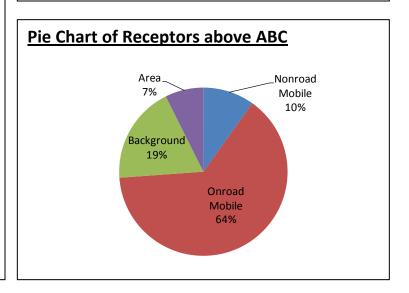

PATS 2017 Pollutant Modeling Summary

Portland Air Toxics Solutions Advisory Committee

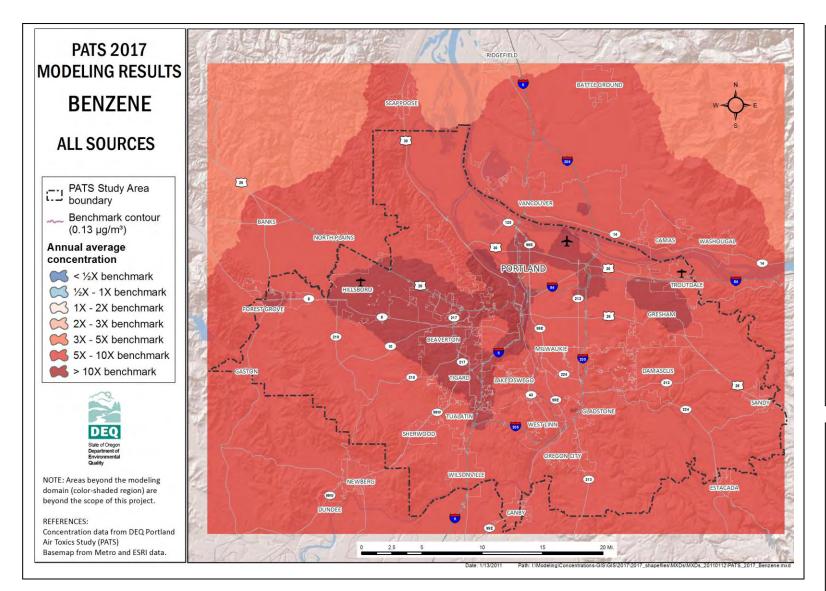
January 25, 2011


1,3 Butadiene Overview

Benchmark Value:	0.03 ug/m3
Denchinark value.	
Primary health effects:	Probable human
	carcinogen, possible
	association with heart
	diseases
Total emissions in PATS study	74.07 tons/year
area:	
Average reduction needed for all	85%, All receptors above
receptors above ABC:	benchmark

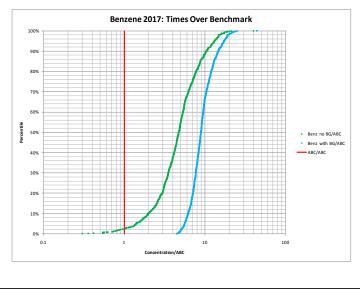

Pertinent information: 1,3-butadiene is a colorless gas with a mild gasoline-like odor.

1,3-butadiene comes from incomplete combustion of fuels from cars and trucks, and off-road engines like lawn mowers and boats. Additional sources include petroleum refining, production of rubber and plastics, forest fires and cigarette smoke.

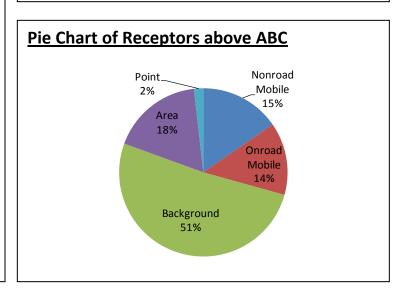

Modeled Distribution of 1,3 Butadiene Concentrations

Most Significant Sources of 1,3 Butadiene				
Source	ТРҮ	% of Poll	Quality Rating	
Area				
1. Res. Wood Comb	23.8	32	С	
2. Open Burning/Fires	3.6	5	с	
Non-road				
1. Non-road 4-Stroke	13.3	18	D	
2. Non-road 2-Stroke	3.2	4	D	
3. Aircraft	2.7	4	В	
4. Non-road Diesel	0.9	1	D	
On-road				
1. On-road Mobile	23.5	32	B/C	
2. On-road Diesel	2.1	3	B/C	
Point - <1% of Pollutant				

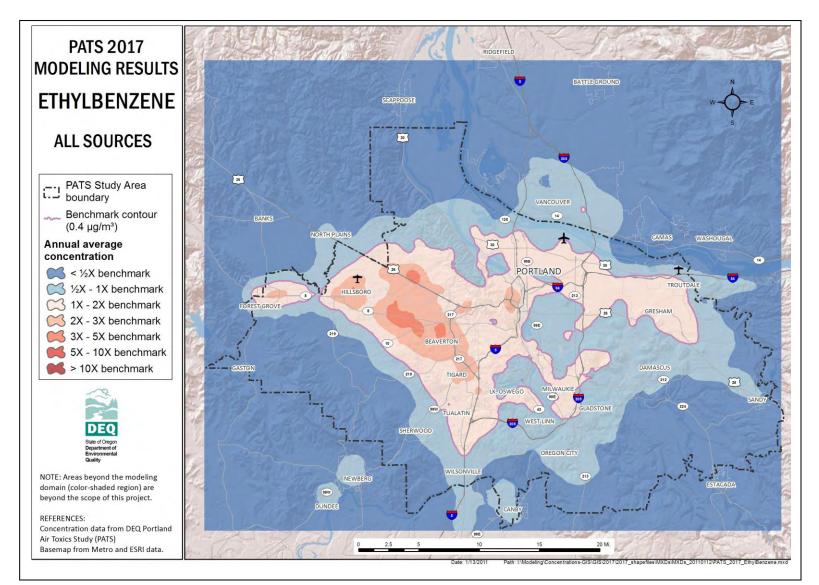
1/25/11 Draft PAGE 3


Benzene Overview

Benchmark Value:	0.13 ug/m3
Primary health effects:	Known (Class A)
	human carcinogen,
	blood disorders, may
	cause anemia and
	genetic damage
Total emissions in PATS study	559.9 tons/year
area:	
Average reduction needed for all	88%, all receptors above
receptors above ABC:	benchmark


Pertinent information: Benzene is a colorless liquid with a sweet odor. It evaporates into the air very quickly and dissolves slightly in water. It is highly flammable and is formed from both natural processes and human activities.

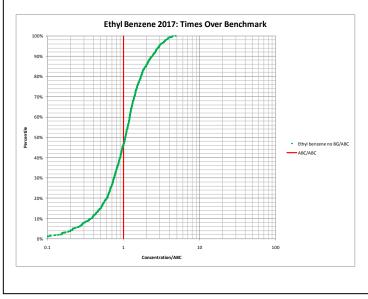
Benzene is found in emissions from cars and trucks, wood smoke, evaporation from service stations, and industrial solvents. Tobacco smoke contains benzene.


Modeled Distribution of Benzene Concentrations

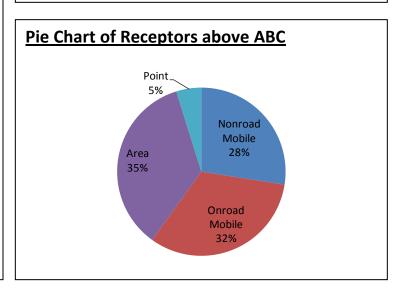
Most Significant Sources of Benzene				
Source	ТРҮ	% of Poll	Quality Rating	
Area				
1. Res Wood Comb	126.6	23	с	
2. Miscellaneous	39.8	7	D	
3. Open Burn/Fires	21.7	4	С	
4. Consumer Products	11.1	2	D	
Non-road				
1. Non-road 4-Stroke	77.8	14	D	
2. Non-road Diesel	10.0	2	D	
On-road				
1. On-road Mobile	189.1	34	B/C	
2. On-road Diesel	16.9	3	B/C	
Point - <1% of Pollutant				

1/25/11 Draft PAGE 4

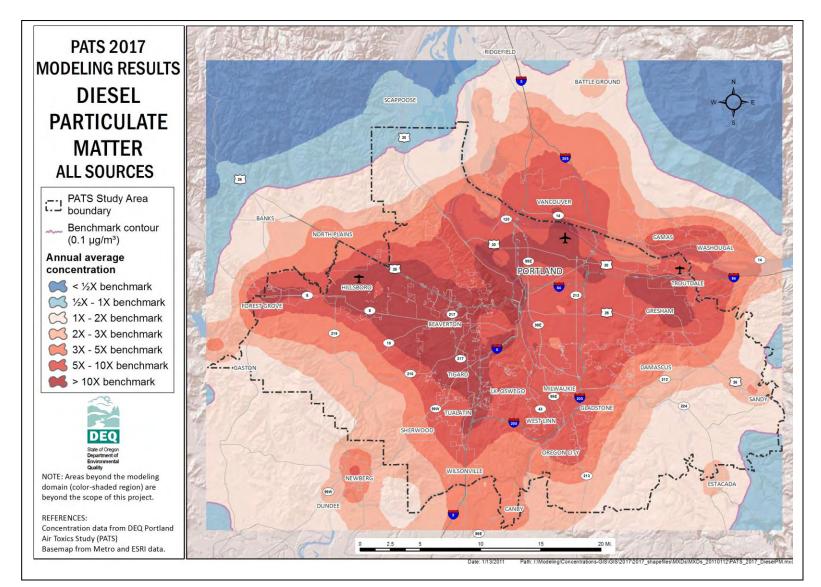
Ethylbenzene Overview


Benchmark Value:	0.40 ug/m3
Primary health effects:	Possible human carcinogen, effects on blood, liver, and kidneys
Total emissions in PATS study area:	294.2 tons/year
Average reduction needed for all receptors above ABC:	42%, 738 receptors above benchmark

Pertinent information: Ethylbenzene is a colorless,

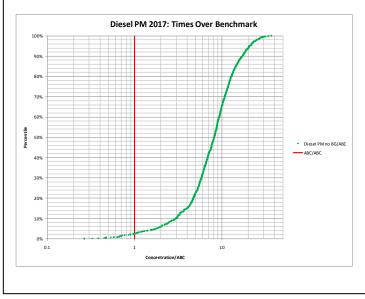

flammable liquid that smells like gasoline. It is naturally found in coal tar and petroleum and is also found in manufactured products such as inks, pesticides, and paints.

The main sources of ethylbenzene in the Portland area are gasoline engines, gasoline evaporation and painting operations. Ethylbenzene is also used in the production of styrene (used to make polystyrene plastic).

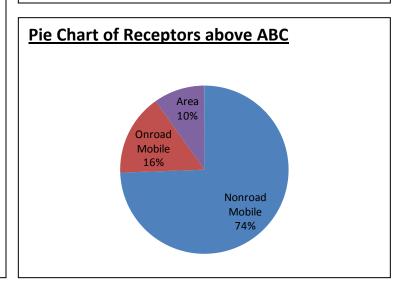

Modeled Distribution of Ethylbenzene Concentrations

Most Significant Sources of Ethylbenzene				
Source	TPY	% of Poll	Quality Rating	
Point				
1. Surface Coating	12.4	4	A	
Area				
1. Solvent/Coating Use	83.0	28	С	
2. Consumer Products	16.8	6	D	
Non-road				
1. Non-road 2-Stroke	41.6	14	D	
2. Non-road 4-Stroke	29.5	10	D	
On-road				
1. On-road Mobile	78.6	27	B/C	
2. On-road Diesel	7.0	2	B/C	

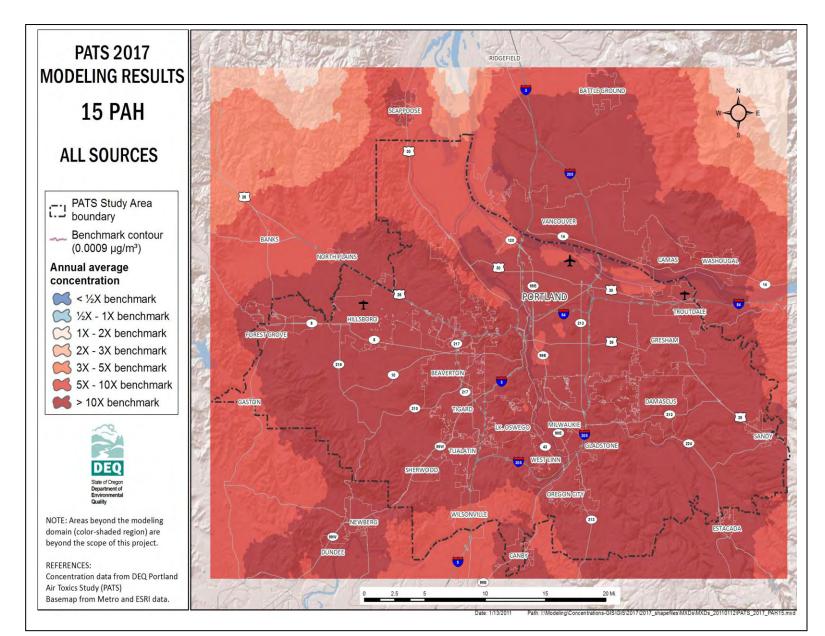
1/25/11 Draft PAGE 5


Diesel PM Overview

Benchmark Value:	0.1 ug/m3
Primary health effects:	Associated with increased lung cancer, breathing and heart problems
Total emissions in PATS study area:	528.7 tons/year
Average reduction needed for all receptors above ABC:	86%, 2049 receptors above benchmark

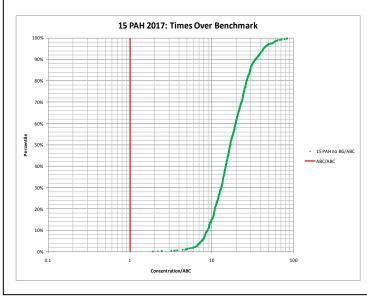

Pertinent information: Diesel particulate matter is not a specific chemical. It is a complex mixture of particles and various chemical compounds in, on, or around the particles.

Diesel particulate matter comes mainly from on and off road diesel engines, including cars and trucks, construction equipment, ships, and rail sources.

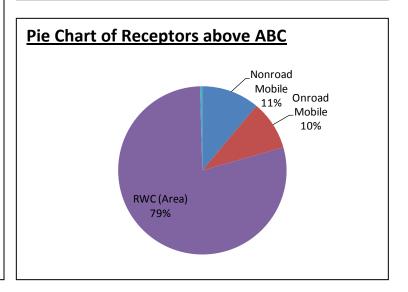

Modeled Distribution of Diesel PM Concentrations

Most Significant Sources of Diesel PM				
Source	TPY	% of Poll	Quality Rating	
Area				
1. Industrial Fuel Use	24.7	5	D	
2. Commercial Fuel Use	14.1	3	D	
3. Residential Heating	8.8	2	D	
Non-road				
1. Non-road Diesel	344.8	65	D	
2. Rail	38.8	7	B/C	
3. Boats – Commercial	7.5	1	В	
On-road				
1. On-road Diesel	81.7	15	B/C	
Point - <1% of Pollutant				

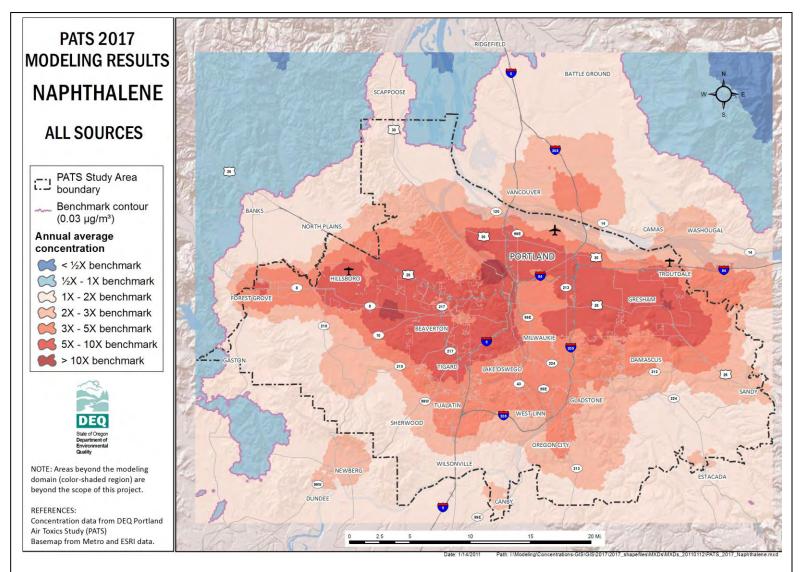
1/25/11 Draft PAGE 6



15-PAH Overview


Benchmark Value:	0.0009 ug/m3
Primary health effects:	One known carcinogen, seven probable (Class B2) human carcinogens
Total emissions in PATS study area:	16.68 tons/year
Average reduction needed for all receptors above ABC:	94%, 2372 receptors above benchmark

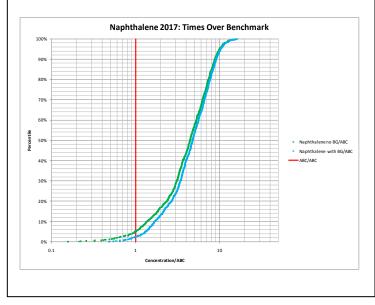
Pertinent information: Polycyclic aromatic hydrocarbons, also called PAHs, are a group of chemicals that are formed during the incomplete burning of carbon-containing substances: wood, coal, oil and gas, garbage, or other organic substances like tobacco or charbroiled meat. PAHs, which are 4,000 or more individual chemical compounds, are usually found as a mixture containing two or more of these compounds.


Modeled Distribution of 15-PAH Concentrations

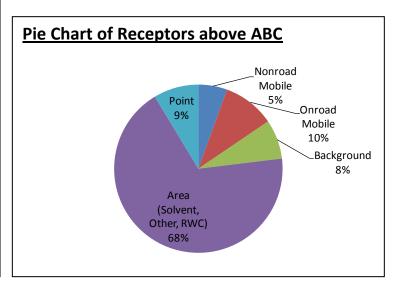
Most Significant Sources of 15-PAH				
Source	ТРҮ	% of Poll	Quality Rating	
Area				
1. Res Wood Comb	12.4	74	с	
2. Miscellaneous	0.8	5	D	
3. Open Burn/Fires	0.8	5	с	
Non-road				
1. Non-road 4-Stroke	0.6	3	D	
2. Non-road 2-Stroke	0.3	2	D	
3. Non-road Diesel	0.2	1	D	
4. Aircraft	0.15	1	В	
On-road				
1. On-road Mobile	1.0	6	B/C	
Point - <1% of	Polluta	ant		

1/25/11 Draft PAGE 7

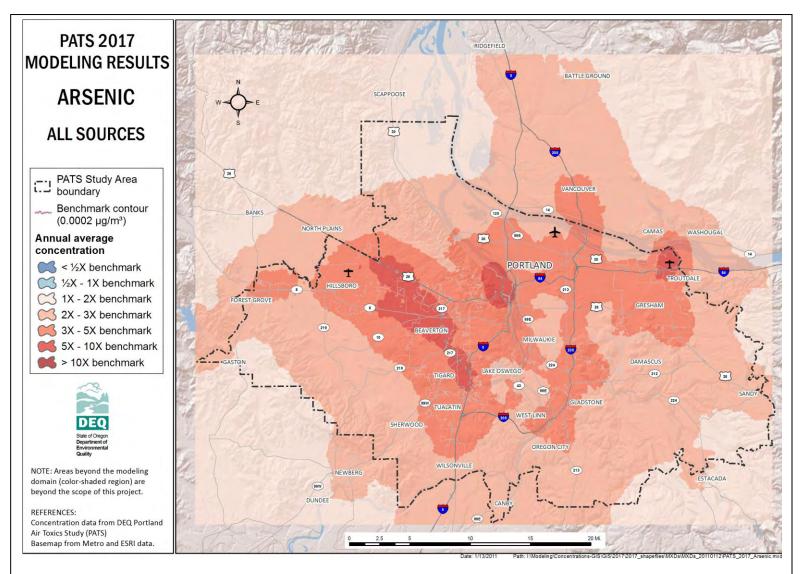
Naphthalene Overview


Benchmark Value:	0.03 ug/m3
Primary health effects:	Possible (Group C) carcinogen
Total emissions in PATS study area:	111.3 tons/year
Average reduction needed for all	77% 2022 recentors

Average reduction needed for all77%, 2032 receptorsreceptors above ABC:above benchmark

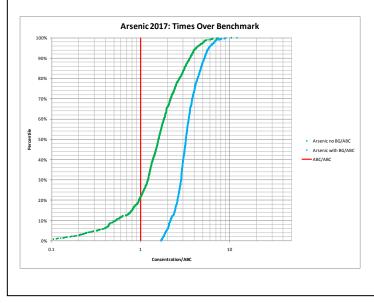

Pertinent information: Naphthalene is a white solid that evaporates easily. Fuels such as petroleum and coal contain naphthalene. Burning tobacco or wood produces naphthalene. It has a strong, but not unpleasant smell. The major *commercial* use of naphthalene is in the manufacture of polyvinyl chloride (PVC) plastics. Its major *consumer* use is in moth repellents and toilet deodorant blocks.

Naphthalene is released to the air from the burning of coal and oil and from the use of mothballs.

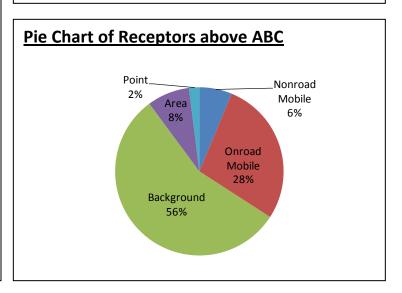

Modeled Distribution of Naphthalene Concentrations

Most Significant Sources of Naphthalene				
Source	TPY	% of Poll	Quality Rating	
Point				
1. Surface Coating	1.2	1	A	
Area				
1. Consumer Products	43.2	39	D	
2. Res Wood Comb	24.9	22	С	
3. Asphalt	22.5	20	D	
Non-road				
1. Non-road 4-Stroke	4.1	4	D	
2. Aircraft	1.5	1	В	
On-road				
1. On-road Mobile	8.4	8	B/C	

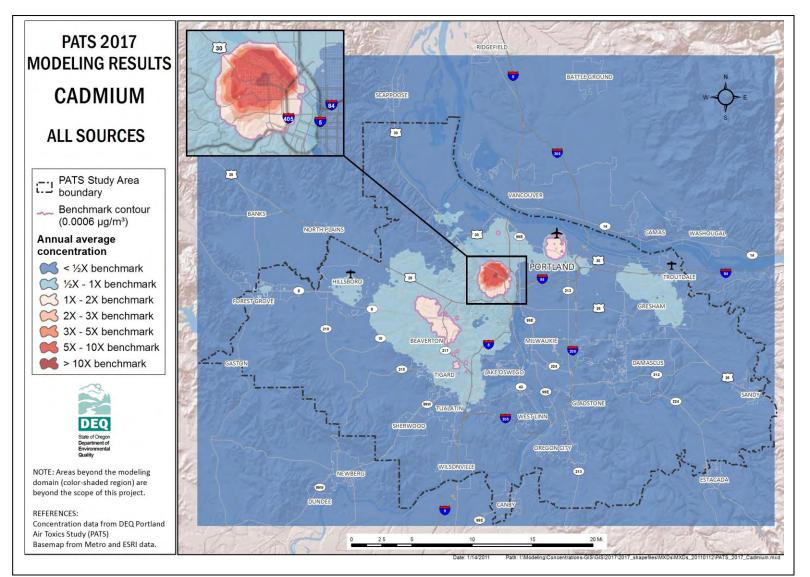
1/25/11 Draft PAGE 8


Arsenic Overview

Benchmark Value:	0.0002 ug/m3
Primary health effects:	Known (Class A)
	human carcinogen
Total emissions in PATS study	0.22 tons/year
area:	
Average reduction readed for all	66% all receptors above


Average reduction needed for all66%, all receptors abovereceptors above ABC:benchmark

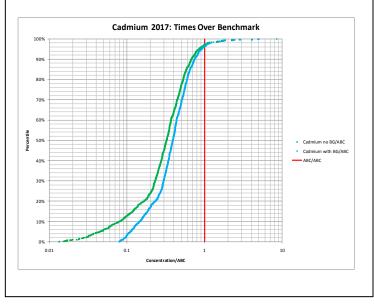
Pertinent information: Sources of arsenic are both human caused and natural. Our soils in the Pacific Northwest are naturally high in arsenic because of their volcanic origins. In Oregon, metal processing, agricultural pesticides, and soil dust are sources of arsenic. Oil and natural gas combustion and on-road and non-road engines are important sources of arsenic.


Modeled Distribution of Arsenic Concentrations

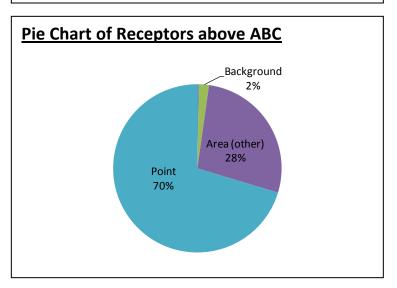
Most Significant Sources of Arsenic			
Source	ТРҮ	% of Poll	Quality Rating
Point			
1. Metals	0.01	5	A
2. Industrial Fuel Use	0.007	4	A
Area			
1. Residential Heating	0.015	7	D
2. Industrial Fuel Use	0.015	7	D
Non-road			
1. Aircraft	0.006	3	В
On-road			
1. On-road Mobile	0.12	53	B/C
2. On-road Diesel	0.01	5	B/C

1/25/11 Draft PAGE 9

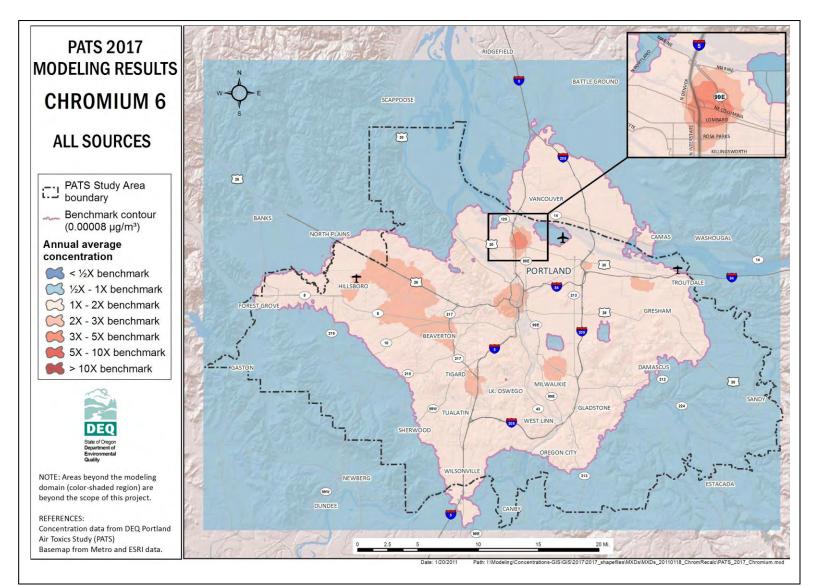
Cadmium Overview


Benchmark Value:	0.0006 ug/m3
Primary health effects:	Probable (Class B2) human carcinogen
Total emissions in PATS study area:	0.187 tons/year
Average reduction needed for all	70%, 62 receptors above

receptors above ABC: benchmark

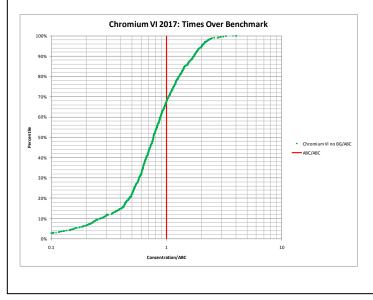

Pertinent information: Cadmium is a relatively abundant soft, bluish-white metal. It is usually found as a mineral combined with other elements.

Burning natural gas for both residential and industrial use and prescribed forest burning are major sources of cadmium in Portland's air. Cadmium is also used to make batteries, pigments, metal coatings, and plastic.

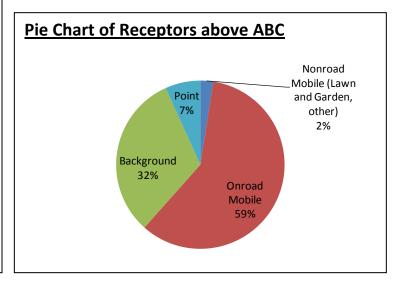

Modeled Distribution of Cadmium Concentrations

Most Significant Sources of Cadmium			
Source	ТРҮ	% of Poll	Quality Rating
Point			
1. Metals	0.030	16	A
2. Industrial Fuel Use	0.013	7	A
3. Glass Manufacturing	0.010	6	A
Area			
1. Residential Heating	0.057	30	D
2. Open Burn/Fires	0.037	19	-
3. Industrial Fuel Use	0.022	12	D
4. Commercial Fuel Use	0.013	7	D
Non-road			
1. Rail	0.002	1	B/C
On-road - <1%	of Poll	utant	

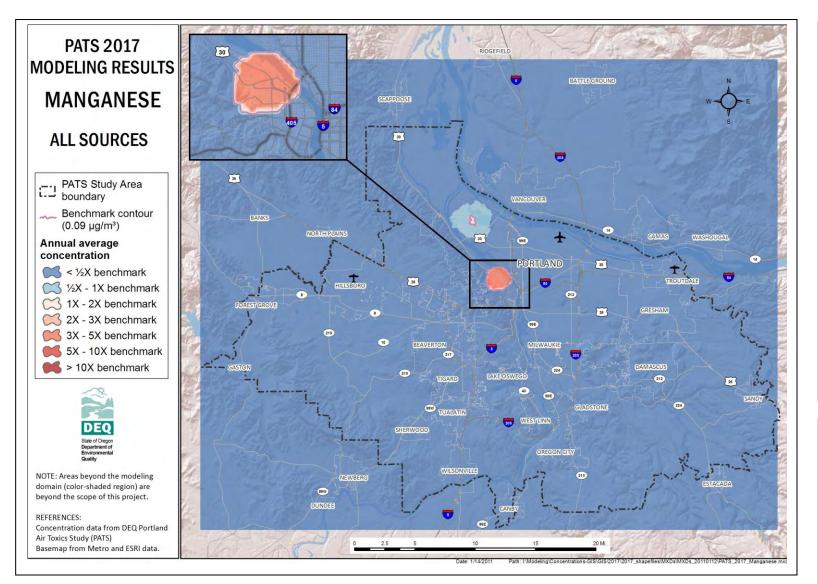
1/25/11 Draft PAGE 10



Chromium VI Overview

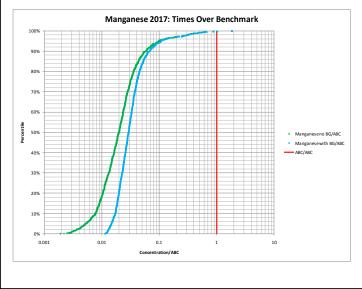

Benchmark Value:	0.00008 ug/m3
Primary health effects:	Known (Class A) human carcinogen, damage to the respiratory tract
Total emissions in PATS study area:	0.047 tons/year
Average reduction needed for all receptors above ABC:	37%, 1155 receptors above benchmark

Pertinent information: Chromium is a naturally occurring metal found in rocks, animals, plants, soil, and volcanic dust and gases. Because of its ability to react with other elements, it can produce hard coatings, which is why it is used in paints for cars, boats and airplanes. Chromium comes in several forms. Hexavalent Chromium - also called chromium VI - is a form of chromium that can occur naturally but is most commonly produced by industrial processes.

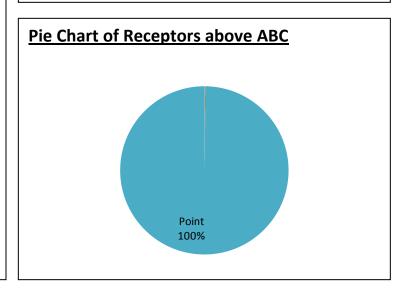

Modeled Distribution of Chromium VI Concentrations

Most Significant Sources of Chromium VI			
Source	TPY 9	6 of Poll	Quality Rating
Point			
1. Metals	0.0074	16	A
2. Industrial Fuel Use	0.0043	9	А
Non-road			
1. Non-road 4-Stroke	0.0013	3	D
On-road			
1. On-road Mobile	0.031	65	B/C
2. On-road Diesel	0.0027	6	B/C
Area - <1% of F	Pollutant	:	

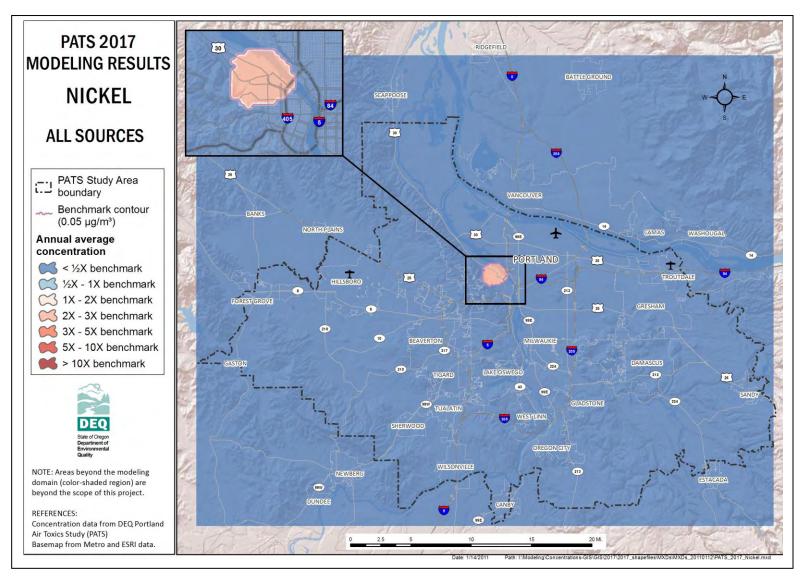
1/25/11 Draft PAGE 11



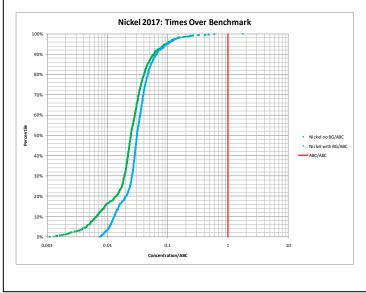
Manganese Overview

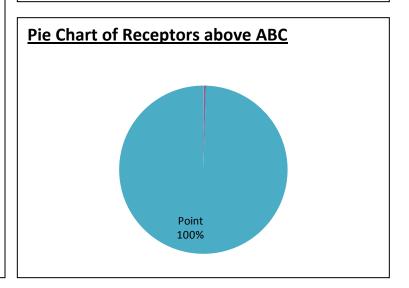

Benchmark Value:	0.09 ug/m3
Primary health effects:	May result in central nervous system problems
Total emissions in PATS study area:	4.36 tons/year
Average reduction needed for all receptors above ABC:	84%, 8 receptors above benchmark

Pertinent information: Manganese is a metal used primarily in steel production to improve hardness, stiffness, and strength. Manganese dioxide is used in the production of dry-cell batteries, matches, fireworks, and the production of other manganese compounds. The main source of manganese pollution in Portland comes from the smelting of steel and iron. Manganese is also emitted from power plants, coke ovens and dust from mining operations. It is also a component of some pesticides and is used as a fuel additive in some gasoline.

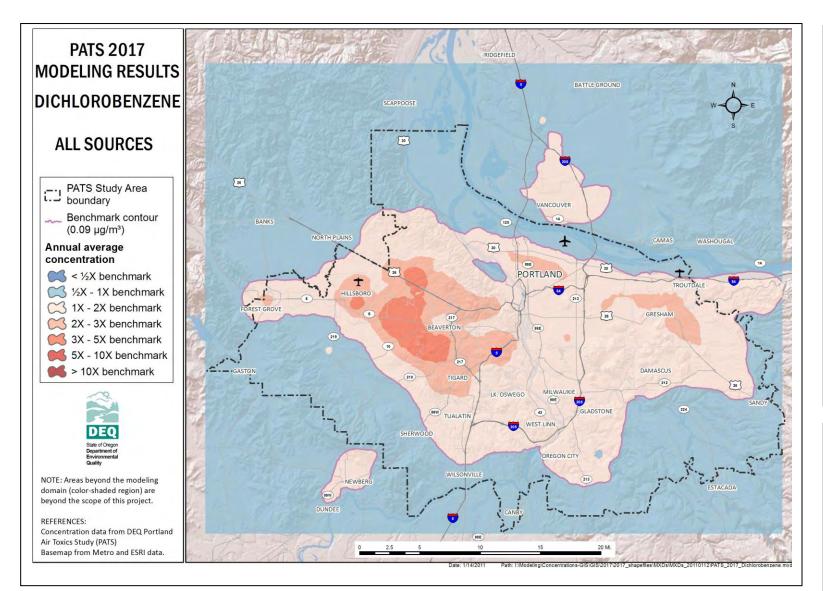

Modeled Distribution of Manganese Concentrations

Most Significant Sources of Manganese			
Source	ТРҮ	% of Poll	Quality Rating
Point			
1. Surface Coating	2.04	47	A
2. Metals	1.68	38	A
3. Industrial Fuel Use	0.45	10	A
4. Asphalt Manufacturing	0.04	1	A
Area			
1. Industrial Fuel Use	0.07	2	D
2. Residential Heating	0.03	1	D
On-road			
1. On-road Mobile	0.03	1	B/C
Non-road - <1%	6 of Pc	ollutant	


1/25/11 Draft PAGE 12

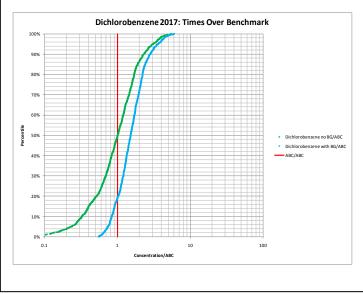

Nickel Overview

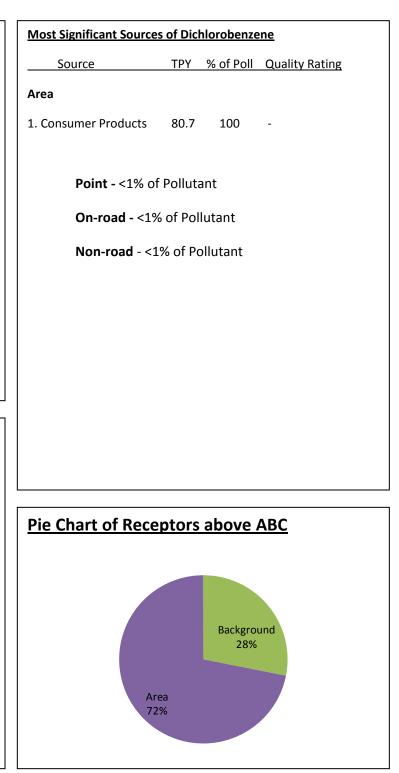
Benchmark Value:	0.05 ug/m3		
Primary health effects:	Two forms are known (Class A) human		
	carcinogens, toxic to		
	the respiratory system		
Total emissions in PATS study	2.64 tons/year		
area:			
Average reduction needed for all	90%, 3 receptors above		
receptors above ABC:	benchmark		
Pertinent information: Nickel is an abundant natural			
element found in soil and emitted from volcanoes.			
Nickel is most often used to make stainless steel and			
nickel compounds are used for nickel plating, to make			
some batteries, and as catalysts.			
Nickel is released into the air by industries that make or			
use nickel or nickel compounds. It is also released by oil-			
and coal-burning power plants and trash incinerators.			


Modeled Distribution of Nickel Concentrations

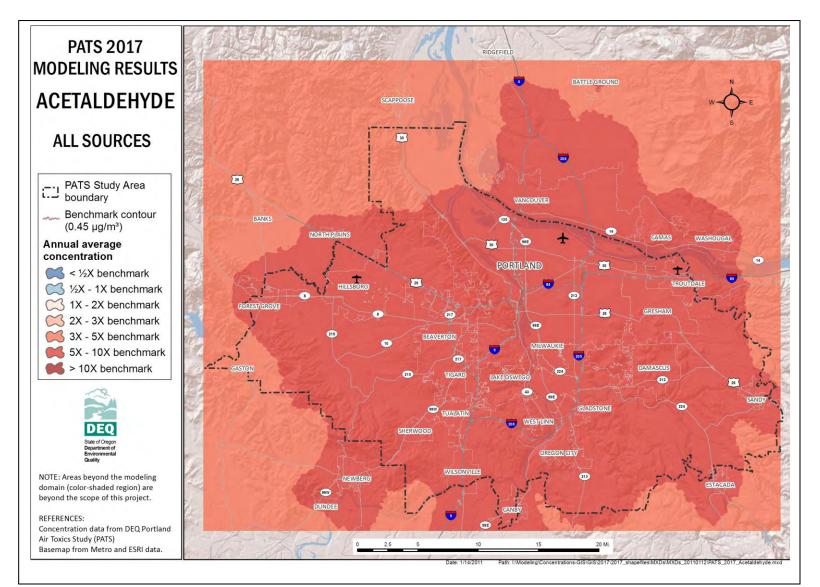
Most Significant Sources of Nickel			
Source	ТРҮ	% of Poll	Quality Rating
Point			
1. Metals	2.0	76	А
2. Industrial Fuel Use	0.08	3	А
3. Surface Coating	0.08	3	А
Area			
1. Industrial Fuel Use	0.21	8	D
2. Residential Heating	0.11	4	D
3. Commercial Fuel Use	0.08	3	D
On-road			
1. On-road Mobile	0.06	2	B/C
Non-road - <1% of Pollutant			

1/25/11 Draft PAGE 13



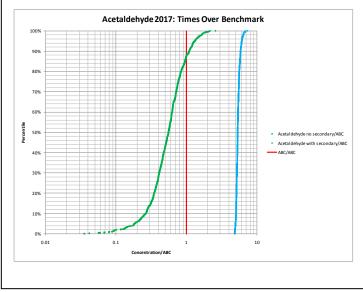

Dichlorobenzene Overview

	Benchmark Value:	0.09 ug/m3	
	Primary health effects:	Possible (Group C)	
		human carcinogen, can	
		result in liver, skin, and	
		central nervous system	
		problems	
	Total emissions in PATS study	80.8 tons/year	
	area:		
	Average reduction needed for all	45%, 1216 receptors	
	receptors above ABC:	above benchmark	
	·		
	Pertinent information: 1,4-Dichlorobenzene, also called para-dichlorobenzene, is a colorless solid with a strong, distinctive smell.		
	1 4 Dishlawahanzana is usad as a	function at to constral	

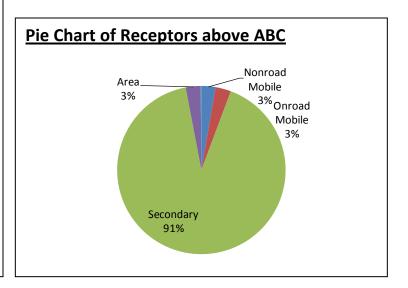

1,4-Dichlorobenzene is used as a fumigant to control moths, molds and mildew. It is also used as a disinfectant in waste containers and restrooms and is the characteristic smell associated with urinal cakes.

Modeled Distribution of Dichlorobenzene Concentrations

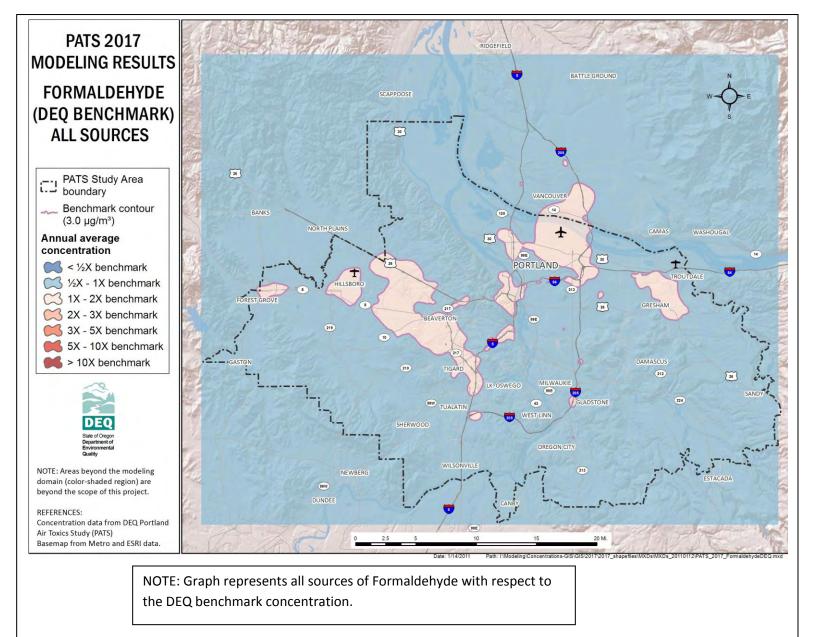
1/25/11 Draft PAGE 14


Acetaldehyde Overview

Benchmark Value:	0.45 ug/m3
Primary health effects:	Probable (Class B2)
	human carcinogen
Total emissions in PATS study	220.9 tons/year
area:	
Average reduction needed for all	81%, all receptors above
receptors above ABC:	benchmark

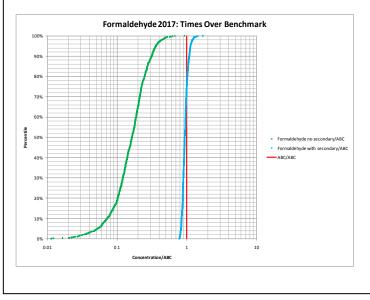

Pertinent information: Acetaldehyde is a colorless, flammable liquid that evaporates easily into the air. It is a product of incomplete combustion of fuels and wood, and is also used in the manufacture of other chemicals and products including perfumes and dyes.

The dominant source of acetaldehyde in the Portland area is smoke from residential wood stoves and fireplaces, but much is also produced by engines.

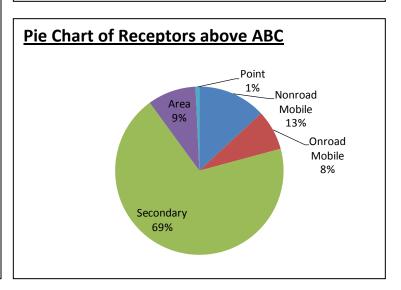

Modeled Distribution of Acetaldehyde Concentrations

Most Significant Sources of Acetaldehyde						
Source	ТРҮ	% of Poll	Quality Rating			
Point						
1. Wood Products	15.9	7	А			
2. Metals	3.4	2	А			
Area						
1. Res Wood Comb	74.7	34	С			
2. Open Burn/Fires	7.9	4	С			
Non-road						
2. Non-road Diesel	26.2	12	D			
1. Non-road 4-Stroke	11.5	5	D			
On-road						
1. On-road Mobile	54.2	25	B/C			
2. On-road Diesel	4.9	2	B/C			

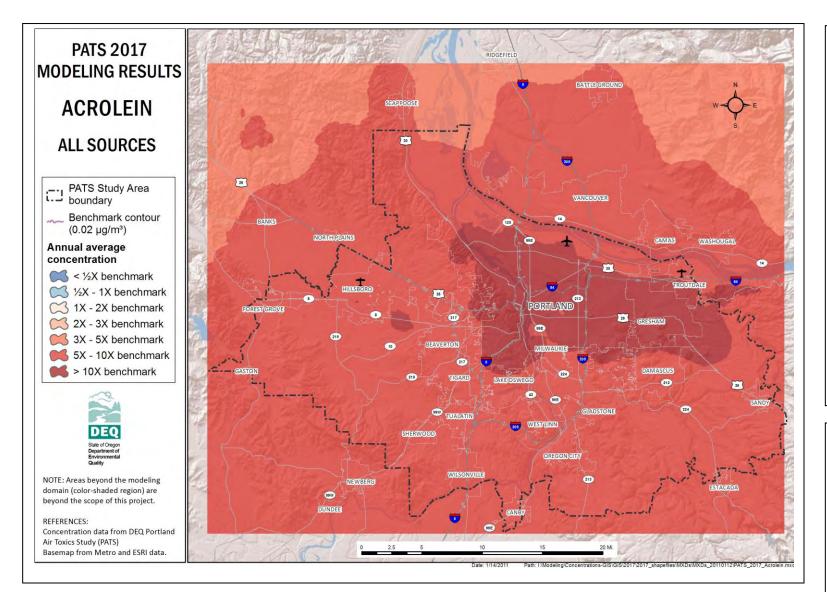
1/25/11 Draft PAGE 15



Formaldehyde Overview

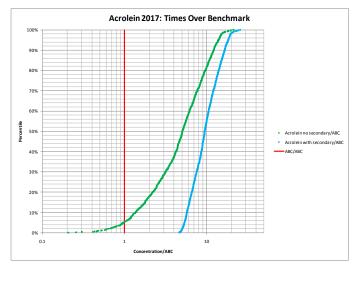

Benchmark Value:	0.009 ug/m3 (EPA)
	3.0 ug/m3 (DEQ)
Primary health effects:	Probable (Class B1)
	human carcinogen
Total emissions in PATS study	426.1 tons/year
area:	
Average reduction needed for all	10%, 325 receptors
receptors above ABC:	above benchmark

Pertinent information: Formaldehyde comes from incomplete fuel combustion from industry, on and offroad engines, construction equipment, diesel fuel combustion, railroads, and airports, as well as from wood burning. It is used as a concrete and plaster additive, as a disinfectant, and as a wood preservative. The highest levels of airborne formaldehyde have been detected in indoor air, where it is released from various consumer products including paneling and carpets.

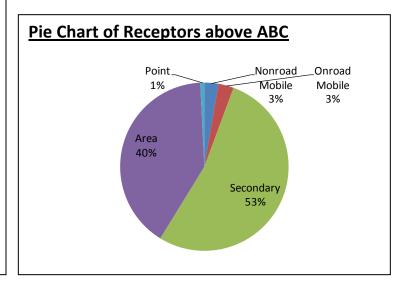

Modeled Distribution of Formaldehyde Concentrations

Most Significant Sources of Formaldehyde					
Source	ТРҮ	% of Poll	Quality Rating		
Point					
1. Industrial Fuel Use	10.6	3	A		
Area					
1. Res Wood Comb	159.8	37	С		
2. Open Burn/Fires	32.8	8	С		
3. Miscellaneous	10.8	3	D		
Non-road					
1. Non-road Diesel	58.2	14	D		
2. Non-road 4-Stroke	22.3	5	D		
On-road					
1. On-road Mobile	74.2	17	B/C		

1/25/11 Draft PAGE 16



Acrolein Overview


Benchmark Value:	$0.02 \mu g/m^2$		
	0.02 ug/m3		
Primary health effects:	General respiratory		
	congestion and eye,		
	nose, and throat		
	irritation		
Total emissions in PATS study area:	78.9 tons/year		
Average reduction needed for all receptors above ABC:	88%, all receptors above benchmark		
Pertinent information: Acrolein is a colorless or yellow liquid that evaporates quickly and burns easily. Acrolein has a strong, unpleasant odor. It reacts quickly when exposed to other substances.			

Acrolein enters the air mainly from wood burning, structural (house and building) fires and construction. Tobacco smoke is another source of acrolein.

Modeled Distribution of Acrolein Concentrations

Most Significant Sources of Acrolein					
Source	ТРҮ	% of Poll	Quality Rating		
Point					
1. Industrial Fuel Use	2.5	3	A		
Area					
1. Open Burn/Fires	59.9	76	С		
2. Res Wood Comb	8.2	10	С		
Non-road					
1. Non-road Diesel	1.5	2	D		
2. Non-road 4-Stroke	1.0	1	D		
3. Non-road 2-Stroke	0.6	1	D		
On-road					
1. On-road Mobile	3.8	5	B/C		

1/25/11 Draft PAGE 17